Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Abstract We explore the effect of variations in the Population III initial mass function (IMF) and star-by-star feedback on early galaxy formation and evolution using the Aeossimulations. We compare simulations with two different Population III IMFs:Mchar = 10M⊙and (Aeos10) andMchar = 20M⊙and (Aeos20). Aeos20 produces significantly more ionizing photons, ionizing 30% of the simulation volume byz ≈ 14, compared to 9% in Aeos10. This enhanced ionization suppresses galaxy formation on the smallest scales. Differences in Population III IMF also affect chemical enrichment. Aeos20 produces Population II stars with higher abundances, relative to iron, of light andα-elements, a stronger odd–even effect, and a higher frequency of carbon-enhanced metal-poor stars. The abundance scatter between different Population II galaxies dominates the differences due to Population III IMF, though, implying a need for a larger sample of Population II stars to interpret the impact of Population III IMF on early chemical evolution. We also compare the Aeossimulations to traditional simulations that use single stellar population particles. We find that star-by-star modeling produces a steeper mass–metallicity relation due to less bursty feedback. These results highlight the strong influence of the Population III IMF on early galaxy formation and chemical evolution, emphasizing the need to account for IMF uncertainties in simulations and the importance of metal-poor Population II stellar chemical abundances when studying the first stars.more » « lessFree, publicly-accessible full text available October 21, 2026
-
Abstract Neutron star (NS) mergers are currently the only observed source ofr-process production in the Universe. Yet, it is unclear how muchr-process mass from these mergers is incorporated into star-forming gas to enrich stars. This is crucial to consider as all otherr-process mass estimates in the Universe beyond Earth are based on stellarr-process abundances. Here, we explore the extent to which merger location and host-galaxy properties affect the incorporation ofr-process elements into star-forming gas, and quantify an “enrichment” timescale to account for this process. To put this timescale in context, we analyze a population of 12 gamma-ray bursts (GRBs) with probable associations tor-process kilonovae (GRB-KNe) and 74 short GRBs without claimed KNe, including new nonparametric star formation histories for the GRB-KN hosts. We find the enrichment timescales for this sample are between ≈7 Myr and 1.6 Gyr, suggesting that environmental enrichment is delayed from NS merger occurrence. Moreover, we find a correlation between the amount of environmental enrichment from a single event and increasing host specific star formation rate (sSFR), and little correlation with stellar mass and GRB galactocentric offset. Environments with low sSFRs (<10−10.5yr−1), which comprise 18% of short-GRB hosts and the host of GW170817, will have little to no capacity for stellar enrichment. Our results indicate that not allr-process from NS mergers is incorporated into newly forming stars, and instead some remains “lost” to the circumgalactic medium or intergalactic medium. Future studies should consider these losses to understand the total contribution from NS mergers to the Universe’sr-process budget.more » « lessFree, publicly-accessible full text available March 26, 2026
-
Free, publicly-accessible full text available June 1, 2026
-
Abstract We conducted an in-depth analysis of candidate member stars located in the peripheries of three ultra-faint dwarf (UFD) galaxy satellites of the Milky Way (MW): Boötes I (Boo1), Boötes II (Boo2), and Segue I (Seg1). Studying these peripheral stars has previously been difficult due to contamination from the MW foreground. We usedu-band photometry from the Dark Energy Camera (DECam) to derive metallicities to efficiently select UFD candidate member stars. This approach was validated on Boo1, where we identified both previously known and new candidate member stars beyond five half-light radii. We then applied a similar procedure to Boo2 and Seg1. Our findings hinted at evidence for tidal features in Boo1 and Seg1, with Boo1 having an elongation consistent with its proper motion and Seg1 showing some distant candidate stars, a few of which are along its elongation and proper motion. We find two Boo2 stars at large distances consistent with being candidate member stars. Using a foreground contamination rate derived from the Besançon Galaxy model, we ascribed purity estimates to each candidate member star. We recommend further spectroscopic studies on the newly identified high-purity members. Our technique offers promise for future endeavors to detect candidate member stars at large radii in other systems, leveraging metallicity-sensitive filters with the Legacy Survey of Space and Time and the new, narrowband Ca HK filter on DECam.more » « less
-
Abstract We investigate how stellar feedback from the first stars (Population III) distributes metals through the interstellar and intergalactic medium using the star-by-star cosmological hydrodynamics simulation, Aeos. We find that energy injected from the supernovae (SNe) of the first stars is enough to expel a majority of gas and injected metals beyond the virial radius of halos with massMdm ≲ 107M⊙, regardless of the number of SNe. This prevents self-enrichment and results in a nonmonotonic increase in metallicity at early times. Most minihalos (Mdm ≳ 105M⊙) do not retain significant fractions of the yields produced within their virial radii until they have grown to halo masses ofMdm ≳ 107M⊙. The loss of metals to regions well beyond the virial radius delays the onset of enriched star formation and extends the period that Population III star formation can persist. We also explore the contributions of different nucleosynthetic channels to 10 individual elements. On the timescale of the simulation (lowest redshiftz= 14.3), enrichment is dominated by core-collapse supernovae for all elements, but with a significant contribution from asymptotic giant branch winds to thes-process elements, which are normally thought to only be important at late times. In this work, we establish important mechanisms for early chemical enrichment, which allows us to apply Aeosin later epochs to trace the evolution of enrichment during the complete transition from Population III to Population II stars.more » « lessFree, publicly-accessible full text available February 4, 2026
-
Abstract The Aeosproject introduces a series of high-resolution cosmological simulations that model star-by-star chemical enrichment and galaxy formation in the early Universe, achieving 1 pc resolution. These simulations capture the complexities of galaxy evolution within the first ~300 Myr by modeling individual stars and their feedback processes. By incorporating chemical yields from individual stars, Aeosgenerates galaxies with diverse stellar chemical abundances, linking them to hierarchical galaxy formation and early nucleosynthetic events. These simulations underscore the importance of chemical abundance patterns in ancient stars as vital probes of early nucleosynthesis, star formation histories, and galaxy formation. We examine the metallicity floors of various elements resulting from Population III enrichment, providing best-fit values for eight different metals (e.g., [O/H] = −4.0) to guide simulations without Population III models. Additionally, we identify galaxies that begin star formation with Population II after external enrichment and investigate the frequency of carbon-enhanced metal-poor stars at varying metallicities. The Aeossimulations offer detailed insights into the relationship between star formation, feedback, and chemical enrichment. Future work will extend these simulations to later epochs to interpret the diverse stellar populations of the Milky Way and its satellites.more » « lessFree, publicly-accessible full text available February 3, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
An official website of the United States government
